8 research outputs found

    What’s In It For Me? Why Narcissists Help Others

    Get PDF
    Grandiose and vulnerable narcissists are both self-absorbed and highly entitled, yet they can also exhibit prosocial behavior, helping others under some circumstances. We predict that grandiose and vulnerable narcissists differ in their motivations to help, and these motivations may be influenced by their interpersonal goals and the perceived status of the target they wish to help. First, participants completed self-report measures assessing their levels of grandiose narcissism, vulnerable narcissism, and their interpersonal goals. Next, they completed a behavioral measure of helpfulness, where participants could help a fictitious partner complete a tangram task. We manipulated the status of their partner so participants perceived a low-status partner (high school student), an equal-status partner (same year in college), or a high-status partner (a graduate student). Results show that both narcissistic subtypes help when put in a situation where helping is normative but reported different helping motivations and experiences. For example, after helping, grandiose narcissists felt superior, special, respected, and like a hero –these effects were sometimes amplified when participants were also high in self-image goals or were helping a low-status individual. In comparison, vulnerable narcissists were less likely to help low-status individuals and reported motivations to help such as appearing likable, not being judged by the partner, and not being judged by the researcher. These results suggest grandiose and vulnerable narcissists may use helping as a way to boost their ego but in different ways (e.g. either for self-enhancement or social approval).  No embargoAcademic Major: Psycholog

    The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults

    Get PDF
    The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African–Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw > 7:0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). Bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ' 22m high and ' 1100m in diameter with steep slopes (up to a dip of 22 ). It sits atop the Calabrian accretionary wedge and a system of flowerlike oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustalderived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about 3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards.Published1-233SR TERREMOTI - Attività dei CentriJCR Journa

    Rationale and design of an independent randomised controlled trial evaluating the effectiveness of aripiprazole or haloperidol in combination with clozapine for treatment-resistant schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One third to two thirds of people with schizophrenia have persistent psychotic symptoms despite clozapine treatment. Under real-world circumstances, the need to provide effective therapeutic interventions to patients who do not have an optimal response to clozapine has been cited as the most common reason for simultaneously prescribing a second antipsychotic drug in combination treatment strategies. In a clinical area where the pressing need of providing therapeutic answers has progressively increased the occurrence of antipsychotic polypharmacy, despite the lack of robust evidence of its efficacy, we sought to implement a pre-planned protocol where two alternative therapeutic answers are systematically provided and evaluated within the context of a pragmatic, multicentre, independent randomised study.</p> <p>Methods/Design</p> <p>The principal clinical question to be answered by the present project is the relative efficacy and tolerability of combination treatment with clozapine plus aripiprazole compared with combination treatment with clozapine plus haloperidol in patients with an incomplete response to treatment with clozapine over an appropriate period of time. This project is a prospective, multicentre, randomized, parallel-group, superiority trial that follow patients over a period of 12 months. Withdrawal from allocated treatment within 3 months is the primary outcome.</p> <p>Discussion</p> <p>The implementation of the protocol presented here shows that it is possible to create a network of community psychiatric services that accept the idea of using their everyday clinical practice to produce randomised knowledge. The employed pragmatic attitude allowed to randomly allocate more than 100 individuals, which means that this study is the largest antipsychotic combination trial conducted so far in Western countries. We expect that the current project, by generating evidence on whether it is clinically useful to combine clozapine with aripiprazole rather than with haloperidol, provides physicians with a solid evidence base to be directly applied in the routine care of patients with schizophrenia.</p> <p>Trial Registration</p> <p><b>Clincaltrials.gov Identifier</b>: NCT00395915</p

    The SEISMOFAULTS project: first surveys and preliminary results for the Ionian Sea area, southern Italy

    Get PDF
    The SEISMOFAULTS project (www.seismofaults.it) was set up in 2016 with the general plan of exploring the seismicity of marine areas using deep seafloor observatories. The activity of the first two years (Seismofaults 2017 and 2018) consisted of the installation of a geophysical-geochemical temporary monitoring network over the Ionian Sea floor. Eleven ocean-bottom seismometers with hydrophones (OBS/H) and two seafloor geochemical-geophysical multiparametric observatories were deployed to: (1) identify seismically active faults; (2) identify potential geochemical precursors of earthquakes; and (3) understand possible cause–effect relationships between earthquakes and submarine slides. Furthermore, five gravity cores were collected from the Ionian Sea bottom and ~4082 km of geophysical acquisition, including multibeam and single channel seismic reflection data, were acquired for a total of 4970 km2 high-resolution multibeam bathymetry. Using Niskin bottles, four water column samples were collected: two corresponding at the location of the two multiparametric observatories (i.e., along presumably-active fault zones), one corresponding at a recently discovered mud volcano, and one located above a presumably-active fault zone away from the other three sites. Preliminary results show: (1) a significant improvement in the quality and quantity of seismological records; (2) endogenous venting from presumably active faults; (3) active geofluid venting from a recently-discovered mud volcano; and (4) the correct use of most submarine devices. Preliminary results from the SEISMOFAULTS project show and confirm the potential of multidisciplinary marine studies, particularly in geologically active areas like southern Italy and the Mediterranean Sea

    A New Approach to Calorimetry in Space-Based Experiments for High-Energy Cosmic Rays

    No full text
    Precise measurements of the energy spectra and of the composition of cosmic rays in the PeV region could improve our knowledge regarding their origin, acceleration mechanism, propagation, and composition. At the present time, spectral measurements in this region are mainly derived from data collected by ground-based detectors, because of the very low particle rates at these energies. Unfortunately, these results are affected by the high uncertainties typical of indirect measurements, which depend on the complicated modeling of the interaction of the primary particle with the atmosphere. A space experiment dedicated to measurements in this energy region has to achieve a balance between the requirements of lightness and compactness, with that of a large acceptance to cope with the low particle rates. CaloCube is a four-year-old R&amp;D project, approved and financed by the Istituto Nazionale di Fisica Nucleare (INFN) in 2014, aiming to optimize the design of a space-borne calorimeter. The large acceptance needed is obtained by maximizing the number of entrance windows, while thanks to its homogeneity and high segmentation this new detector achieves an excellent energy resolution and an enhanced separation power between hadrons and electrons. In order to optimize detector performances with respect to the total mass of the apparatus, comparative studies on different scintillating materials, different sizes of crystals, and different spacings among them have been performed making use of MonteCarlo simulations. In parallel to simulations studies, several prototypes instrumented with CsI(Tl) (Caesium Iodide, Tallium doped) cubic crystals have been constructed and tested with particle beams. Moreover, the last development of CaloCube, the Tracker-In-Calorimeter (TIC) project, financed by the INFN in 2018, is focused on the feasibility of including several silicon layers at different depths in the calorimeter in order to reconstruct the particle direction. In fact, an important requirement for &gamma; -ray astronomy is to have a good angular resolution in order to allow precise identification of astrophysical sources in space. In respect to the traditional approach of using a tracker with passive material in front of the calorimeter, the TIC solution can save a significant amount of mass budget in a space satellite experiment, which can then be exploited to improve the acceptance and the resolution of the calorimeter. In this paper, the status of the project and perspectives for future developments are presented
    corecore